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The phase behavior of hard-sphere colloidal systems in the volume fraction 
regime 0.46 <~b <0.64 has been studied in detail using a new and efficient 
algorithm to treat the nonanalytic interaction pair potential. In particular the 
influence of various initial configurations such as purely random and face- 
centered cubic (FCC) has been investigated, and former simulations have been 
extended toward much longer time scales. Thus, in the case of randomly 
initiated systems, crystallization could be suppressed for a comparably long time 
(~ 500rR, where rR is the structural relaxation time) where the system remained 
in a metastable glassy state. The concentration dependence of the long-time 
self-diffusion coefficients of these systems has been analyzed according to free 
volume theory (Doolittle equation). Numerical data fit excellently to the 
theoretical predictions, and the volume fraction of zero particle mobility was 
found close to the expected value of random close packing. In case of the FCC 
initiated systems, samples remained crystalline within the simulated evolution 
time of ~500rR if their volume fraction was above the predicted freezing tran- 
sition ~bF= 0.494, whereas at lower concentrations rapid melting into a fluidlike 
disordered state is observed. It should be noted that this algorithm, which 
neglects higher-order correlations, considering only direct pair interactions, 
nevertheless yields the correct hard-sphere crystallization phase behavior as 
predicted in the literature. 

KEY WORDS: Brownian dynamics; hard spheres; phase transitions of hard- 
sphere systems. 
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transition at a volume fraction regime far below the crystalline close-packed 
state (~b = 0.741 ). This crystallization is based exclusively on entropic effects 
and was quantitatively investigated by Monte Carlo (MC) simulations in 
the pioneering work of Hoover and Ree. tl) Using a single-occupancy cell 
model and extensive calculations, the authors determined thermodynamic 
equilibrium properties (i.e., pressure and entropy) of the hard-sphere solid. 
Thus, they found an FCC freezing point at ~b F-- 0.495 and the corresponding 
melting point at ~bM = 0.545. These findings have since been experimentally 
confirmed by Pusey and van Megen, t2~ using optical Bragg reflection while 
investigating the phase behavior of a hard-sphere colloidal system comprised 
of PMMA-latex spheres within a decalin/CS2 mixture. 

Recently we have presented a novel numerical algorithm for efficiently 
simulating systems of interacting Brownian hard spheres, t3"4) which uses no 
constraints, contrary to the Hoover-Ree model, thus not considering any 
far-ranged position correlations explicitly. Our earlier calculations, which 
were based on purely random initial particle configurations, agreed well 
with predictions for the fluid t5'6) and the glassy ~7'8) state; however, no crys- 
tallization was detected in the predicted regime. This failure might have 
arisen from the exclusion of many-body correlations, thereby enabling 
prior simulation experiments to predict random packing even for systems 
that should crystallize. To study this phenomenon of suppressed crystalliza- 
tion in more detail, the results presented here are based on an analysis of 
the concentration regime 0.46 < ~b < 0.64, using random and, for the first 
time, FCC initial configurations. In addition, the evolution time of some of 
the simulated systems has been extended by a factor of 30 compared to the 
previous calculations c3'4) to check the long-time stability of the metastable 
or equilibrated structures, respectively. In Section 2 we provide a short 
description of our algorithm, including the parameters used in the current 
simulations. Section 3 contains definitions of the numerical quantities 
which have been used to probe the phase transition behavior of our hard- 
sphere systems. In the last section the results of the new simulation runs 
are presented and discussed, emphasizing that, using a simple numerical 
technique without any constraints, as do former cell models, ~) it has been 
possible to reproduce both the correct FCC crystallization and glass tran- 
sition phase behavior of colloidal hard-sphere systems. 

2. S I M U L A T I O N  P A R A M E T E R S  

The Simulations implement periodic boundary conditions t9) with 
N =  864 particles in the central cubic box. The algorithm proceeds as 
follows in each of the successive time steps of formal duration z: 
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1. Each particle is moved the distance (2Do'c) 1/2 in one of the ran- 
domly chosen directions along each Cartesian axis (___x, ___y, +_z). Do is 
the Stokes-Einstein diffusion coefficient, which equals 4.4 x 10-~3 m 2 sec-i  
for free Brownian motion of particles of hard-sphere radius R = 0.5/~m in 
water at 20~ (Here, it should be noted that the characteristic structural 
relaxation time of this system rR, given by R2/Do, ~5) equals 0.57 sec.) 

2. Any particle overlap detected after the move is corrected by 
pairwise shifting the interfering particles until they just touch. Although 
this shift may cause secondary overlaps with other particles, this is 
ignored, t3) and the next time step z proceeds from the particle configura- 
tions obtained after these shifts. 

The calculation time step was adjusted to 0.5msec (~0.001rR) to 
allow fmite calculation time while minimizing the erroneous effects of 
secondary particle overlaps. As discussed in more detail in previous publi- 
cations, ~3"4) at high concentrations these secondary overlaps in the particle 
configurations cause a significant decrease of the effective particle volume 
fraction ~rr due to the reduced distance of touching particles compared to 
the theoretical hard-sphere value 2R. At the given calculation time step, 
this effect has to be taken into account at concentrations ~b > 0.40. The 
results obtained in this work are discussed in terms of their dependence on 
these reduced concentrations ~ber r, which, in contrast to our earlier work, 
where a simple formula had been given to calculate ~beff from the number 
of overlapping particles and the mean (!) particle overlap distance, t3'4) this 
time has been determined numerically exact using the reduced radius of 
each single (!) particle in case it should overlap with others. Concerning 
particles which exhibit overlaps with more than one neighboring particle, 
the largest overlap is used to calculate the reduced radius. Nevertheless, 
these reduced volume fractions agreed well with the values previously 
approximated using the mean particle overlap, thus verifying our former 
assumptions presented in ref. 3. 

Generally, from one simulation run, 100 particle configurations are 
stored with time spacing zlt=0.1 sec, corresponding to 0.1/0.0005 =200 
calculation cycles of formal calculation time step 3. The first configuration 
is stored after 2 sec of equilibration (~4rR),  which has been proved, from 
our former calculations, to be sufficient to reach an equilibrated structure 
which will no~ change further within given evolution time. To check the 
long-time stability of the structures previously investigated for comparably 
short evolution times (12 sec ,~ 21rR), a few long-time runs were performed 
for a evolution time totaling 282 sec (~500rR), where, in order to reduce 
the data amount without losing time resolution by the choice of a 
longer time spacing At, not the configurations, but only certain numerical 
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quantities characterizing the structure of 700 configurations with 
At = 0.4 sec have been stored as a function of time. A detailed description 
of these quantities will be given further below. 

The theoretical volume fraction ~b, defined as NVsVbo~x (N is the 
number of spheres, Vs is the sphere volume=4/3rcR3), is adjusted by 
selecting an adequate volume of the cubic box (Vbox). Once again it should 
be noted that, as stated above, especially at high concentrations the effective 
volume fraction ~berr may be significantly smaller than this theoretical ~b, due 
to the secondary particle overlaps. As in the previous work, hydrodynamic 
interactions are totally neglected, due to insufficient calculation power; 
however, theoretical predictions t~~ suggest that hydrodynamic interactions 
should not influence the phase behavior of the colloidal system. 

3. DEFINITIONS AND PHYSICAL INTERPRETATIONS OF 
CHARACTERISTIC N U M E R I C A L  QUANTITIES 

3.1. Short-  and Long-Time Sel f -Di f fusion Coeff icients 
D s and D ,  

These quantities, which characterize the single-particle mobility and its 
time-scale dependence, may easily be determined from the single-particle 
mean-squared displacements. According to Einstein, t]l) the time-dependent 
self-diffusion coefficient D(At) is given by the following equation: 

D(At) = ( (ri(t + At) -- ri(t)> 2,/(6 zit) (1) 

Using Eq. (1), the mean-squared displacement has been determined from 
two sets of configuration data with time spacing At, by ensemble and time 
averaging, respectively. D(At=O.1 sec<zR) is defined as the short-time 
diffusion coefficient Ds, whereas D(At=5 sec,>zR) in the case of our 
system corresponds to the long-time diffusion coefficient DL. As shown pre- 
viously, TM D(At) does not further decrease at time scales At > 2 sec (~  4rR). 
D s is a measure for the particle mobility while the particle stays within the 
regime of its next neighbors. DL, on the other hand, characterizes the prob- 
ability of the particle to escape from this cage of its next neighbors/]2) 
Close to crystallization or the glass transition, structural relaxation of the 
system is slowing down by a few magnitudes, which corresponds to a vast 
persistence of the next-neighbor cages, and thus implies a dramatic 
decrease of the long-time particle mobility (i.e., smaller DL). Further on, if 
the sample volume drops beyond a critical value, i.e., the particle concen- 
tration corresponding to very high concentrations, a close-packed state 
which, in case of glassy hard-sphere systems, should correspond to the 
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geometrical random close packing ~b =0.64, is reached and the particle 
mobility should be frozen completely. Therefore systems at this concentra- 
tion should exhibit zero long-time particle mobility. The critical slowing 
down of simple fluid systems has been analyzed previously in terms of so- 
called free-volume theories. Many examples are found in the literature, t~2" ~3) 

In the case of the crystallization phase transition, the Lindemann 
criterion t14) predicts a value DL/Do=O.1 at melting for samples without 
hydrodynamic interactions, thus providing a dynamical measure for this 
transition. As stated above, the hard-sphere crystallization should occur 
in the regime 0.495 (freezing)<r (melting) far beyond close 
packing, t~'2) Thus, a certain amount of free volume is left to the central 
particle within the cage of its next neighbors (at ~b=0.545, the next- 
neighbor distance of an FCC configuration is 1.11 x 2R, compared to 2R at 
close packing, whence Ds should not be affected nearly as strongly by the 
FCC crystalline phase transition as DL). 

3.2. S t ruc tu ra l  S ta t ic  Proper t ies  

As in previous work, ~4) the pair distribution G2(r ) is used to charac- 
terize the structure of the simulated systems. In addition, a set of other 
quantities, used before in the error and convergence analysis of the algo- 
rithm, 13) this time is applied to the structure analysis of the configurations: 

As our hard-sphere system, with increasing eerr, tends toward a close- 
packed state, numerical quantities such as the number of touching (or 
slightly overlapping!) spheres N(r), the number of particle pair contacts 
or(r), and the mean overlapping distance d(r), all of these determined 
regarding the secondary overlaps after (!) the primary overlap correc- 
tions, (3) are also expected to increase. On the contrary, N(r)/ov(r), a 
measure for the cluster formation as well as the number of next neighbors 
with close contact, should decrease [N(r)/ov(r)= 2 for isolated pairs, 0.33 
at FCC close (!) packing, and ~ 0.40 at random close packing]. However, 
in case of the FCC crystallization which occurs at eefr,~0.50 far beyond 
crystalline close packing, N(r), or(r), and d(r) should be expected to 
decrease with increasing ~ber r (~befr> 0.50), while N(r)/ov(r) should increase. 
This can easily be deduced from the fact that the hard-sphere FCC crystal 
exhibits, compared to the fluid state at slightly lower particle concentra- 
tion, a strongly increased tendency of particles toward staying at their sites 
defined by the initial FCC lattice and thus well separated from each other 
(i.e., less close-packed). Taking this into account, it should be possible 
to probe the crystalline phase transition of hard-sphere systems by 
investigating the above numerical quantities determined from the particle 
configurations. 
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It should be emphasized that, whereas the dynamical physical quan- 
tities discussed in Section 3.1 above as well as G2(r) can also be determined 
experimentally for colloidal hard-sphere systems, using, for example, 
dynamic light scattering (Ds, DL) (15'16) and SAXS [ S ( q ) ~ G 2 ( r ) ] ,  (17"18) 

there is no experimental technique currently available which can measure 
quantities such as N(z)/ov(T) directly. Digital image processing in connec- 
tion with ultramicroscopy of core-shell systems (19'2~ may provide a future 
possibility to measure time-dependent configuration data of a colloidal 
hard-sphere system, thereby offering experimental access to quantities like 
the mean number of touching next neighbors or the accurate percentage of 
particle contacts within a given sample. 

4. RESULTS AND DISCUSSIONS 

Figure 1 shows the resulting N(T)/oo(r) for long-time runs (t,,~ 500TR) 
of FCC (~1.46) and randomly (~1.17) initiated systems at effective 
volume fractions ~0.54, i.e., in the predicted limit of the existence of hard- 
sphere crystals. Cm) As stated above, these runs have been performed to 
check the long-time stability of the obtained structures, respectively, within 
the present technical limits. So, for example, one run of 864 particles at 
r = 0.55 with equilibration of 2 sec and evolution time of 280 sec took 
about 4 days on a Macintosh Quadra 840 AV (which is about ten times 
faster than the Macintosh II vx or Micro VAX 3000 used in our previous 
simulations(3"4)). An application of our new efficient algorithm ~ using 

1.5 

1.45 

1.4 

1.35 

1.3 .E 
z 1.25 

1.2 

1.15 

1.1 

� 9  . �9 . . . . .  " . .  , . ~ . .  . :.~_" 

;":~" " :""'"":;~"<"~'~':':'" ~'" ~- . . . . .  .....~, ,i 

,...." .,- ,~, ... ?.,,~q: .,:- . . ,  . . . . .  ; ; .  ~,.. ,:... ' . . . ." 
' . ' ~ " . ' . ' . : . .  " - . ' ? ' : ' : '  .~ , '"  "-'. ' "  " ' - ' :  " ~ :  " ' - ' " .  " ' ~ r . "  " . .  " - : : "  

I O0 200 300 400 500 600 700 
~t [0.4 s] 

Fig. 1. Long-time stability of randomly [lower dots, N(z) /ov ( r ) ,~  1.17] and FCC [upper 
dots, N(r) /oo(r) .~  1.46] initiated systems with r  The numerical quantity N(r) /ov(r)  
is a measure for the close packing of the structure (see text). No significant changes of either 
system can be found within the simulated evolution time. 
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modern supercomputers should allow for a vast extension of the above 
time scale toward probably longer than IO,O00zR321"22~ At present, our 
results show that in both cases the structure remains unchanged in the 
regime (0-500)zR after an equilibration of 4rR. 

It should be noted that N(z)/ov(r) is significantly larger in the case of 
the FCC initiated system, although both FCC and randomly initiated runs 
have treated comparable particle volume fractions. As stated before and 
will be discussed in more detail below [see Section 3.2 and comments on 
Fig. 6 below for a detailed discussion of the possibility to probe hard- 
sphere crystallization using the parameter N(r)/ov(z)], this increased 
N('r)/ov(r) shows the tendency toward partial conservation of the initial 
crystalline order. Here, it should be mentioned that a perfect FCC crystal 
at volume fractions far beyond close packing should exhibit N(~)/ov(r) = O. 
The above numerical result [Fig. 1, N(r)/ov(r)~ 1.46] may be interpreted 
as follows: although on average staying at their well-defined lattice sites of 
the FCC state, the particles are continuously probing the walls of their 
cages, thus causing some particle contacts between next neighbors. There- 
fore, as deduced from the numerical results presented in this paper, the 
hard-sphere FCC crystalline state beyond close packing seems to be some- 
how fluctuating and distorted and not perfectly static and crystalline. 

The rapid equilibration of both runs (~<2 sec) once more underlines 
the efficiency of the new technique. The lack of crystallization of the 
randomly initiated system may be explained by the very slow particle 
mobility and corresponding structural relaxation. Here, it should be noted 
that the experimentally observed time scale for crystallization is of the 
order of hours to days, t2~ and thus is much longer than the evolution time 
regarded in the present calculations. Concerning the FCC initiated system, 
it seems to be surprising that, although our algorithm is based only on 
direct pair interactions and neglects higher-order particle correlations, tl~ 
the (distorted) equilibrium crystalline structure remains unchanged during 
the whole time regime (0--500)rR. After having verified the long-time 
stability of the high-density amorphous (fluid-glassy) and crystalline 
(FCC-distorted) systems obtained from numerical calculations, the corre- 
sponding phase transition behavior (glass transition and crystallization) 
will be discussed in detail in the following. 

4.1. Glass Transit ion of Monodisperse Hard Spheres 

Our results concerning the random close-packing volume fraction, 
which might be identified with the glassy state of zero particle mobility, 
were determined earlier by analyzing the percentage of touching spheres 
and are published elsewhere. ~4) Whereas in these earlier investigations only 
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structural geometrical properties had been used to identify the glass tran- 
sition, here an analysis based on the long-time particle mobility DL(q~eff)/D o 
will be presented. It is well known that the critical slowing down of the 
diffusivity in simple liquids may be interpreted in terms of the so-called 
free-volume theory. Only the basic equation to analyze our numerical 
results is given in this paper, as follows (for details see the numerous publi- 
cations on this subject)(13"23"24): 

DL(Ck~fr)/D o = exp[ - c / (  V-- Vo)] (2) 

c here will be regarded as without special physical meaning concerning the 
glass transition, whereas V o corresponds to the volume V of samples 
without any free volume and, consequently, with zero particle mobility. In 
the case of hard spheres, therefore, V o should correspond to the volume 
which is occupied by a random close-packed system. Figure 2 shows the 
analysis of the long-time diffusivity of the amorphous dense systems in 
the concentration regime 0.54~<~befr~<0.59 according to Eq. (2). Here, the 
effective volume V of the systems has been calculated from @err, using the 
simple relationship 

V= NVsIr (3) 

N is the number of spheres ( =  864) and Vs the volume of one single sphere 
(4~R3 = 0.5236 flm3). AS can be seen from Fig. 2, the numerical data agree 
very well with the theoretical predictions. The volume of random close 
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Fig. 2. Analysis of the concentration dependence of the long-time self diffusion coefficient 
[DL(~cff), symbols] of the amorphous systems by free-volume theory (Doolittle equation, 
line). Numerical data agree well with the theoretical fitting function, which predicts a zero- 
mobility limit of ~b=a-~0.66, slightly shifted compared to the expected value @=rr= 0.64. 
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packing obtained from the fit corresponds to a volume fraction of 0.66, 
which is slightly larger than the theoretical value of 0.64. This finding may 
be explained by the fact that secondary particle overlaps are not identical 
in magnitude for all particles of  the sample. Thus, a small effective size 
polydispersity is inflicted on the sample, which, as found before, (4) shifts the 
regime of random close packing and the glass transition toward higher 
volume fractions. The value of 0.66 for ~RCP would correspond to a radius 
polydispersity of  ~ 5 % if one assumes a Gaussian distribution of particle 
radii. (4) This agrees well with the size profiles which have been obtained 
from numerical determination of the effective radius of  each particle 
(Sect ion2)  for our amorphous systems in the concentration regime 
0.54 ~< ~b~fr ~< 0.59. 

4.2. Crystal l izat ion of Hard Spheres 

Figure 3 illustrates the dependence of Ds and D L on ~be,-in the hard- 
sphere volume fraction regime 0.46 < ~befr< 0.67. Whereas the short-time 
behavior shows no significant difference between randomly and FCC 
initiated simulation runs, DL(FCC) starts to deviate strongly from the 
fluid-state behavior at ~berr>~0.495, which therefore is identified with the 
freezing concentration. The largest difference between FCC and randomly 
initiated runs is reached at ~r the melting concentration. At 
higher volume fractions, the long-time particle mobility converges again, 
indicating the transition to a close-packed state at ~berr~ 0.66. 
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Fig. 3. Concentration dependence of short-time (Ds, filled symbols) and long-time (DL, 
open symbols) self-diffusion coefficients from simulation runs with random (squares) and 
FCC (circles) initial configurations. FCC initiated systems exhibit distinct deviations from the 
fluid-state behavior at @errs> 0.495, indicating the FCC crystallization of hard-sphere systems. 
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Figure 4 depicts the time-dependent self-diffusion coefficient for the 
fluid and crystalline states. As stated above, the particle mobility of the 
crystalline state diverges strongly in the long-time regime (dt>~2 sec), 
whereas at shorter time scales (dt <, 0.5 sec) comparable particle diffusivity 
is obtained for the fluid and crystalline systems. It should be noted that a 
constant long-time limit DL is maintained at dt>~2.0sec. Thus, our 
previous definition of DL [ = D(d t = 5 sec) ] corresponds well to the limit of 
infinite diffusion time. 

In Fig. 5, G2(r) is presented for the volume fraction regime where FCC 
crystallization should occur [~b=0.54, ~befr(randomly initiated)=0.529, 
~befr(FCC) =0.535].  The difference in ~ber r of randomly and FCC initiated 
systems is caused by the closer-packed equilibrium configuration of the 
randomly initiated run, resulting in more prominent secondary particle 
overlaps and correspondingly larger reduction of ~b. Whereas at q~r 0.50 
the results for both initial configurations correspond very well to the 
predictions of the Percus-Yevick approximation for the fluid state of hard- 
sphere systems, (+'6) we find distinct differences in the regime ~b~fr~>0.50 
(Fig. 5). The G2(r) of the FCC initialized system shows additional peaks 
corresponding to a (disordered) FCC crystal. At this point, we should 
mention that the tendency to maintain the initial perfect FCC structure 
increases with increasing ~befr~> 0.50. No amorphous-state glass transition 
was found for FCC initiated systems at ~b~rr~>0.58 as predicted in the 
literaturC 7'8) for randomly initiated and rapidly compressed systems. The 
reason may be that single-particle dynamics is too slow at these high 
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Fig. 5. Pair distribution function G,(r) for systems with random (dotted line) and FCC 
(circles) initial configurations. Given are results at 4,=0.54, where q~c~r(random)=0.529 and 
#cfr(FCC) = 0.535. The data give evidence for the existence of a (distorted) FCC structure at 
#cfr/> 0.50. 

concentrations to reach the state of random close packing from FCC initial 
positions within the limited time of our simulations (282 sec~500rR). 
As stated above, the same explanation could be valid in the case of the 
lack of crystallization of randomly initiated systems in the regime 0.50 ~< 
~befr ~< 0.58. 

Finally, the concentration dependence of the equilibrium structure of 
our system can be characterized by the various quantities used in our 
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Fig. 6. Concentration dependence of N(r)/ov(r) for systems with random (squares) and FCC 
(circles) initial configurations. FCC initiated systems at qtar>~ 0.496 show less tendency toward 
cluster formation and close packing, thus giving evidence for a crystal-like structure with well- 
separated particles, isolated on defined lattice sites. 
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former error and convergence analysis of the algorithm ~3) and given in 
Section 3. Since all of these exhibit the FCC crystalline phase transition, 
here only N(T)/ov(r) (Fig. 6) will be presented and discussed. Whereas the 
randomly initiated systems behave as anticipated for the amorphous fluid 
state (Section 3), the FCC initialized systems show decreasing tendency 
toward close packing at ~b~fr~> 0.50 (freezing volume fraction! ) with increas- 
ing ~be~. This corresponds, as stated above, to an increased probability of 
the particles remaining at their initial FCC lattice sites. N(r)/ov(r) reaches 
its maximum ( ~ 1.46) at ~berr ~ 0.54 which therefore might be identified with 
the hard-sphere melting volume fraction. 

5. C O N C L U S I O N S  

By extending former calculations to much longer time scales and using 
both random and FCC initial configurations, we have investigated the 
phase transition regime of colloidal hard spheres in more detail. 

At high concentrations ~befr~> 0.50, amorphous systems were obtained 
from random initialization, which did not crystallize within an evolution 
time of ~ 500rR although crystallization should be expected, tl'2) It has been 
concluded that these kinds of metastable fluid- to glasslike amorphous 
dense states are maintained due to very slow structural relaxation, thus 
affording much longer evolution times for the samples to crystallize (the 
order of hours, as observed in real experimentst2)l) than used in our 
simulations ( ~  5 min). Free-volume theory ~3) has been used to analyze the 
concentration-dependent long-time diffusivity DL(~berr) of these amorphous 
systems, yielding as limit of zero particle mobility the theoretically expected 
concentration, i.e., the volume fraction of random close packing. A minor 
deviation toward too high volume fraction could be explained in terms of 
a slight polydispersity introduced to the effective particle radii by non- 
uniform secondary particle overlaps. As shown in our earlier work, (4) 
polydispersity causes the volume fraction of random close packing to be 
shifted toward higher volume fractions. 

Contrary to the above findings, starting from a well-defined crystalline 
FCC lattice, the crystalline order was largely maintained for time scales up 
to 500rn in the regime ~befr~>0.50, without any indication of melting, i.e., 
complete disordering. Nevertheless, it might be possible that these crys- 
talline systems melt at much longer time scales t>> 500rn which cannot 
be investigated within reasonable calculation time on currently available 
computers. The crystallization, i.e., maintaining of the crystalline initial 
structure, could be probed using both dynamical and structural measures. 
The findings indicated the existence of a distorted but nevertheless crystalline 
structure with critically slowed down long-time diffusivity corresponding to 
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an effective caging of central particles by their next neighbors. As shown by 
the concentration dependence of the short-time diffusion coefficient D s for 
both fluid-glassy and fluid-crystalline systems, the crystallization transition 
cannot be probed by this quantity. This may be understood from the fact 
that at crystallization in the regime ~berr~> 0.50 a considerably large amount 
of free volume is left within the next-neighbor cages, thus imposing much 
less restriction on the particle motion within the length scale of the 
cage dimensions (Ds) than on the probability of particles to escape their 
cages (DL). The results presented in this paper correspond very well to 
earlier findings concerning the crystalline phase transition of hard-sphere 
systems, m2~ At the very end it should be emphasized that our numerical 
technique, which is based on a very simple principle and uses neither 
constraints nor many-body correlations, nevertheless is adequate for 
investigating the complete phase behavior of colloidal hard-sphere systems. 
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